Understanding Hessian Alignment for Domain Generalization

Sobhan Hemati*

Guojun Zhang* Amir Estiri Huawei Noah's Ark Lab

- Domain Generalization aims to learn invariant mechanisms from multiple source domains, so as to generalize to unseen target domains.
- What is the role of Hessian Alignment in DG?
- Summary 1: The distance between the classifier's head Hessians is an upper bound of the transfer measure that quantifies the domain shift
- Summary 2: Hessians and gradient alignment simultaneously encourage invariant representation learning at different levels.
- Summary 3: To align Hessians efficiently, we propose two simple yet effective Hessian alignment methods, based on different estimations

Preliminaries

Transferable (Zhang et al. 2021): Every near-optimal source classifier is also near-optimal on the target

$$\operatorname{argmin}(L_{\mathcal{D}}, \delta_{\mathcal{D}}) := \{ h_{\theta} \in \mathcal{H}, L_{\mathcal{D}}(\theta) \leq \inf_{h_{\theta} \in \mathcal{H}} L_{\mathcal{D}}(\theta) + \delta_{\mathcal{D}} \}$$

Definition: \mathcal{S} is $(\delta_{\mathcal{S}}, \delta_{\mathcal{T}})$ -transferable to \mathcal{T} if

 $\operatorname{argmin}(\mathcal{L}_{\mathcal{S}}, \delta_{\mathcal{S}}) \subseteq \operatorname{argmin}(\mathcal{L}_{\mathcal{T}}, \delta_{\mathcal{T}})$

Use Transfer Measure to quantify transferability

$$T_{\Gamma}(\mathcal{S}||\mathcal{T}) = \sup_{h_{\theta} \in \Gamma} \left[L_{\mathcal{T}}(\theta) - \inf_{h_{\theta} \in \mathcal{H}} L_{\mathcal{T}}(\theta) - (L_{\mathcal{S}}(\theta) - \inf_{h_{\theta} \in \mathcal{H}} L_{\mathcal{S}}(\theta)) \right]$$

Transferable \equiv Small transfer measure, if $\Gamma = \operatorname{argmin}(L_{\mathcal{S}}, \delta_{\mathcal{S}})$.

Theoretical results

Theorem. Under mild assumptions, the spectral norm of Hessian Differences between source and target domains is an upper bound for Transfer Measure:

$$T_{\Gamma}(\mathcal{S}||\mathcal{T}) \leq \frac{1}{2}\delta^2 ||H_{\mathcal{S}} - H_{\mathcal{T}}||_2 + o(\delta^2)$$

Alignm V-Rex CORAL IGA Fish Fishr Hessian Xi Chen

*Equal Contribution

Proposition (Feature matching) Let $\widehat{y_p}$ and y_p be the network prediction and true target with the p-th class, z_i be the i-th feature before the classifier. Matching the gradients and Hessians w.r.t. the classifier head across domains aligns:

$$\frac{\partial \ell}{\partial b_p} = \left(\widehat{y_p} - y_p\right), \ (Error)$$

$$\frac{\partial \ell}{\partial w_{p,q}} = (\widehat{y_p} - y_p) z_q, \ (Error \times Feature)$$

 $\frac{\partial^2 \ell}{\partial b_u \partial b_v} = \widehat{y_u} \left(\delta_{u,v} - \widehat{y_v} \right), \ (Logit)$

$$\frac{\partial^{2} \ell}{\partial w_{p,q} \partial b_{u}} = z_{q} \widehat{y_{p}} (\delta_{p,u} - \widehat{y_{u}}), (Logit \times Feature)$$

$$\frac{\partial^2 \ell}{\partial w_{p,q} \partial w_{u,v}} = \widehat{y_p} z_q z_v (\delta_{p,u} - \widehat{y_u}), \ (Logit \times Covariance)$$

Hessian and gradient alignment can be seen a generalization of other invariant representation learning methods

ent attribute	Loss	Feature	Covariance	Error	$\text{Error} \times \text{Feature}$	Logit	$\text{Logit} \times \text{Feature}$	$\text{Logit} \times \text{Covariance}$	Hu
	\checkmark^1	×	×	×	×	×	×	X	Com
	×	1	1	X	×	×	×	X	wi
	×	×	×	1	1	×	×	X	0.0
	×	×	×	1	1	×	×	X	0.0
	1	×	×	×	\checkmark^2	×	×	X	stance
Alignment	×	×	×	1	1	1	✓	✓	ian dis
									/ ഗററ

Algorithms

How to align Hessians and gradient across training domains efficiently?

Hessian-Gradient Product

$$L_{HGP} = \frac{1}{n} \sum_{e=1}^{n} L_{S_e} + \alpha \left| \left| H_{S_e} \nabla_{\theta} L_{S_e} - \overline{H_S} \nabla_{\theta} L_S \right| \right|_2^2 + \beta \left| \left| \nabla_{\theta} L_{S_e} - \overline{\nabla_{\theta} L_S} \right| \right|_2^2 \right|_2^2$$

Hutchinson's diagonal estimator

$$L_{Hutchinson} = \frac{1}{n} \sum_{e=1}^{n} L_{S_e} + \alpha \left| \left| D_{S_e} - \overline{D_S} \right| \right|_2^2 + \beta \left| \left| \nabla_{\theta} L_{S_e} - \overline{\nabla_{\theta}} L_S \right| \right|_2^2$$

where the bar notation means average over all training environments

Algorithm

ERM (Vapni IRM (Arjov: GroupDRO Mixup (Wan MLDG (Li CORAL (St MMD (Li et DANN (Gai CDANN (ZI MTL (Bland SagNet (Nat ARM (Zhan VREx (Krue RSC (Huang Fishr (Rame

HGP Hutchinson

> Met ERM IRM V-R Fish HGI

ទ្ល៊ 0.010

0.005

0.000 L

Correlation between Hessian distances and OOD accuracies/losses for HGP and Hutchinson regularization during the training for Colored MNIST

Meth Hessi Grad Hessi

Ablation study of the Hutchinson method on PACS when the test domain is Sketch

	VLCS	PACS	OfficeHome	DomainNet	Avg
ik, 1999)	77.2	83.0	65.7	40.6	66.6
sky et al., 2019)	76.3	81.5	64.3	33.5	63.9
(Sagawa et al., 2020)	77.9	83.5	65.2	33.0	64.9
ng et al., 2020)	77.7	83.2	67.0	38.5	66.6
et al., 2018a)	77.2	82.9	66.1	41.0	66.8
un and Saenko, 2016)	78.7	82.6	68.5	41.1	67.7
t al., 2018b)	77.3	83.2	60.2	23.4	61.0
nin et al., 2016)	76.9	81.0	64.9	38.2	65.2
hou et al., 2021)	77.5	78.8	64.3	38.0	64.6
chard et al., 2021)	76.6	83.7	65.7	40.6	66.7
m et al., 2020)	77.5	82.3	67.6	40.2	66.9
ng et al., 2020)	76.6	81.7	64.4	35.2	64.5
eger et al., 2021)	76.7	81.3	64.9	33.4	64.1
g et al., 2020)	77.5	82.6	65.8	38.9	66.2
e et al., 2022)	78.2	85.4	67.8	2	21
	76.7	82.2	67.5	41.1	66.9
	79.3	84.8	68.5	41.4	68.5

0.60

		Domair	nBed
hod	Train acc.	Test acc.	
N	86.4 ± 0.2	14.0 ± 0.7	
1	71.0 ± 0.5	65.6 ± 1.8	
Ex	71.7 ± 1.5	67.2 ± 1.5	
r	71.0 ± 0.9	69.5 ± 1.0	
Р	71.0 ± 1.5	69.4 ± 1.3	
chinson	61.7 ± 1.9	74.0 ± 1.2	

0.50 ဗိ 0.45 ----- VREx ---- CORAL MMD HGP ---- Hutchinson 0.35 0.15 0.10

Transferability experiment on OfficeHome

nod T	est acc.
ian & gradient	81.4
ient only	77.0
ian only	79.4

Adversarial robustness under perturbation